如何運(yùn)用中間電壓提高功率轉(zhuǎn)換效率?
發(fā)布時(shí)間:2018-11-26 責(zé)任編輯:lina
【導(dǎo)讀】對(duì)于需要從高輸入電壓轉(zhuǎn)換到極低輸出電壓的應(yīng)用,有不同的解決方案。一個(gè)有趣的例子是從48 V轉(zhuǎn)換到3.3 V。這樣的規(guī)格不僅在信息技術(shù)市場(chǎng)的服務(wù)器應(yīng)用中很常見(jiàn),在電信應(yīng)用中同樣常見(jiàn)。
對(duì)于需要從高輸入電壓轉(zhuǎn)換到極低輸出電壓的應(yīng)用,有不同的解決方案。一個(gè)有趣的例子是從48 V轉(zhuǎn)換到3.3 V。這樣的規(guī)格不僅在信息技術(shù)市場(chǎng)的服務(wù)器應(yīng)用中很常見(jiàn),在電信應(yīng)用中同樣常見(jiàn)。
圖1.通過(guò)單一轉(zhuǎn)換步驟將電壓從48 V降至3.3 V。
如果將一個(gè)降壓轉(zhuǎn)換器(降壓器)用于此單一轉(zhuǎn)換步驟,如圖1所示,會(huì)出現(xiàn)小占空比的問(wèn)題。占空比反映導(dǎo)通時(shí)間(當(dāng)主開(kāi)關(guān)導(dǎo)通時(shí))和斷開(kāi)時(shí)間(當(dāng)主開(kāi)關(guān)斷開(kāi)時(shí))之間的關(guān)系。降壓轉(zhuǎn)換器的占空比由以下公式定義:
當(dāng)輸入電壓為48 V而輸出電壓為3.3 V時(shí),占空比約為7%。
這意味著在1 MHz(每個(gè)開(kāi)關(guān)周期為1000 ns)的開(kāi)關(guān)頻率下,Q1開(kāi)關(guān)的導(dǎo)通時(shí)間僅有70 ns。然后,Q1開(kāi)關(guān)斷開(kāi)930 ns,Q2導(dǎo)通。對(duì)于這樣的電路,必須選擇允許最小導(dǎo)通時(shí)間為70 ns或更短的開(kāi)關(guān)穩(wěn)壓器。如果選擇這樣一種器件,又會(huì)有另一個(gè)挑戰(zhàn)。通常,當(dāng)以非常小的占空比運(yùn)行時(shí),降壓調(diào)節(jié)器的高功率轉(zhuǎn)換效率會(huì)降低。這是因?yàn)榭捎脕?lái)在電感中存儲(chǔ)能量的時(shí)間非常短。電感器需要在較長(zhǎng)的關(guān)斷時(shí)間內(nèi)供電。這通常會(huì)導(dǎo)致電路中的峰值電流非常高。為了降低這些電流,L1的電感需要相對(duì)較大。這是由于在導(dǎo)通時(shí)間內(nèi),一個(gè)大電壓差會(huì)施加于圖1中的L1兩端。
在這個(gè)例子中,導(dǎo)通時(shí)間內(nèi)電感兩端的電壓約為44.7 V,開(kāi)關(guān)節(jié)點(diǎn)一側(cè)的電壓為48 V,輸出端電壓為3.3 V。電感電流通過(guò)以下公式計(jì)算:
如果電感兩端有高電壓,則固定電感中的電流會(huì)在固定時(shí)間內(nèi)上升。為了減小電感峰值電流,需要選擇較高的電感值。然而,更高的電感值會(huì)增加功率損耗。在這些電壓條件下,ADI公司的高效率LTM8027 µModule®穩(wěn)壓器在4 A輸出電流時(shí)僅實(shí)現(xiàn)80%的功率效率。
圖2.電壓分兩步從48 V降至3.3 V,包括一個(gè)12 V中間電壓。
目前,非常常見(jiàn)且更高效的提高功率效率的電路解決方案是產(chǎn)生一個(gè)中間電壓。圖2顯示了一個(gè)使用兩個(gè)高效率降壓調(diào)節(jié)器的級(jí)聯(lián)設(shè)置。第一步是將48 V電壓轉(zhuǎn)換為12 V,然后在第二轉(zhuǎn)換步驟中將該電壓轉(zhuǎn)換為3.3 V。當(dāng)從48 V降至12 V時(shí),LTM8027 μModule穩(wěn)壓器的總轉(zhuǎn)換效率超過(guò)92%。第二轉(zhuǎn)換步驟利用LTM4624將12 V降至3.3 V,轉(zhuǎn)換效率為90%。這種方案的總功率轉(zhuǎn)換效率為83%,比圖1中的直接轉(zhuǎn)換效率高出3%。
這可能相當(dāng)令人驚訝,因?yàn)?.3 V輸出上的所有功率都需要通過(guò)兩個(gè)獨(dú)立的開(kāi)關(guān)穩(wěn)壓器電路。圖1所示電路的效率較低,原因是占空比較短,導(dǎo)致電感峰值電流較高。
比較單步降壓架構(gòu)與中間總線架構(gòu)時(shí),除功率效率外,還有很多其他方面需要考慮。但是,本文只打算討論功率源轉(zhuǎn)換效率的重要方面。這個(gè)基本問(wèn)題的另一種解決方案是采用新型混合降壓控制器LTC7821。它將電荷泵動(dòng)作與降壓調(diào)節(jié)結(jié)合在一起。這使得占空比達(dá)到2 × VIN/VOUT,因此可以在非常高的功率轉(zhuǎn)換效率下實(shí)現(xiàn)非常高的降壓比。
中間電壓的產(chǎn)生對(duì)于提高特定電源的總轉(zhuǎn)換效率可能相當(dāng)有用。為了提高圖1中極小占空比下的轉(zhuǎn)換效率,業(yè)界進(jìn)行了大量開(kāi)發(fā)工作。例如,可以使用非??焖俚腉aN開(kāi)關(guān)來(lái)降低開(kāi)關(guān)損耗,從而提高功率轉(zhuǎn)換效率。然而,這種解決方案的成本目前還高于級(jí)聯(lián)解決方案(例如圖2所示)。
Frederik Dostal [frederik.dostal@analog.com]就讀于德國(guó)愛(ài)爾蘭根大學(xué)微電子學(xué)專業(yè)。他于2001年加入電源管理業(yè)務(wù)部門(mén),曾擔(dān)任各種應(yīng)用工程師職位,并在亞利桑那州鳳凰城工作了4年,負(fù)責(zé)開(kāi)關(guān)模式電源。Frederik于2009年加入ADI公司,擔(dān)任歐洲分公司的電源管理技術(shù)專家。
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢(shì)
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車(chē)拋負(fù)載Load Dump
- 50%的年長(zhǎng)者可能會(huì)聽(tīng)障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
- 攻略:7種傾斜傳感器的設(shè)計(jì)選擇
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤(pán)
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開(kāi)關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)