MOSFET Qrr—在追求能效時(shí),忽視這一參數(shù)是危險(xiǎn)的
發(fā)布時(shí)間:2019-09-09 責(zé)任編輯:lina
【導(dǎo)讀】在電流流經(jīng)MOSFET體二極管的應(yīng)用中,反向恢復(fù)電荷Qrr會(huì)引起一些重大的挑戰(zhàn),設(shè)計(jì)工程師需要仔細(xì)處理。在低功耗充電器和適配器產(chǎn)品應(yīng)用中,其開關(guān)頻率高且負(fù)載電流一般小于5A,對(duì)I2R損耗的關(guān)注較少,設(shè)計(jì)工程師應(yīng)密切關(guān)注動(dòng)態(tài)損耗。選擇低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI輻射。
在電流流經(jīng)MOSFET體二極管的應(yīng)用中,反向恢復(fù)電荷Qrr會(huì)引起一些重大的挑戰(zhàn),設(shè)計(jì)工程師需要仔細(xì)處理。在低功耗充電器和適配器產(chǎn)品應(yīng)用中,其開關(guān)頻率高且負(fù)載電流一般小于5A,對(duì)I2R損耗的關(guān)注較少,設(shè)計(jì)工程師應(yīng)密切關(guān)注動(dòng)態(tài)損耗。選擇低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI輻射。
在為許多類型的消費(fèi)和工業(yè)應(yīng)用設(shè)計(jì)電源時(shí),效率往往是最重要的因素,這些應(yīng)用包括手機(jī)、平板電腦和筆記本電腦、可充電的電動(dòng)工具和LED照明,以及不計(jì)其數(shù)的其它產(chǎn)品。 一些應(yīng)用需要高效率,以滿足法定要求,或只是減少散熱,從而實(shí)現(xiàn)更小、更輕的最終產(chǎn)品設(shè)計(jì)。選擇同步MOSFET來滿足所有這些要求可能是一項(xiàng)較為困難的任務(wù)。
當(dāng)然,工程師首先會(huì)查看顯眼的數(shù)據(jù)表參數(shù),選擇電壓和電流額定值合適的器件。由于效率很重要,大多數(shù)器件首先按照RDS(on)選擇。 然后依據(jù)開關(guān)頻率選擇動(dòng)態(tài)參數(shù);例如,柵極電荷Qg和Qgd可以很好地反映柵極的預(yù)期損耗。Qg品質(zhì)因數(shù)(FOM = RDS(on) x QG)也可以很好地反映開關(guān)應(yīng)用中MOSFET的效率,同時(shí)MOSFET的電容,Ciss、Coss、Crss可以反映漏極-源極尖峰和柵極擾動(dòng)是否會(huì)成為問題。低電容也有助于提高效率。最后,器件必須能夠適合于您的設(shè)計(jì),所以您需要查看其尺寸和所采用的封裝。
然而,還有另一個(gè)參數(shù)Qrr常常被忽略,它通常位于數(shù)據(jù)表的底部。在電流流經(jīng)MOSFET體二極管的應(yīng)用中,例如,在同步整流器和續(xù)流應(yīng)用中,反向恢復(fù)電荷Qrr會(huì)引起一些重大的挑戰(zhàn),設(shè)計(jì)工程師需要仔細(xì)處理。
Qrr或反向恢復(fù)電荷是當(dāng)二極管正向偏置時(shí),在MOSFET體二極管的PN結(jié)累積的電荷。在大多數(shù)應(yīng)用中,電流在每個(gè)開關(guān)周期流過體二極管兩次,導(dǎo)致電荷累積。之后的電荷釋放,要么是在MOSFET內(nèi)部,要么是作為附加電流(Irr)短暫地流過高邊MOSFET,并在系統(tǒng)中造成額外的損耗。
尖峰特性
反向恢復(fù)電流(Irr)也與PCB的寄生電感相互作用,導(dǎo)致漏極-源極電壓(VDS)出現(xiàn)尖峰。這些尖峰可以通過降低PCB的電感或選擇Qrr較低的MOSFET來降低。 如果不能在設(shè)計(jì)階段解決尖峰問題,往往導(dǎo)致工程師不得不使用更高的電壓等級(jí),因此項(xiàng)目后期需要使用價(jià)格更高昂的MOSFET。
但這仍然留下了一個(gè)問題。如果不加以處理,則漏極引腳上的尖峰可以經(jīng)由電容耦合到柵極引腳上,導(dǎo)致所謂的“柵極擾動(dòng)”。如果柵極擾動(dòng)超過MOSFET的閾值電壓,則發(fā)生交叉導(dǎo)通,且MOSFET可能在應(yīng)該關(guān)閉時(shí)導(dǎo)通。如果高端MOSFET和低端MOSFET同時(shí)導(dǎo)通,電源軌之間會(huì)產(chǎn)生直通電流,造成較大的功率損耗,并有可能損壞MOSFET。
讓我們來更詳細(xì)地研究一下這個(gè)問題。在大多數(shù)應(yīng)用所需的死區(qū)時(shí)間,電流在每個(gè)開關(guān)周期會(huì)流過體二極管兩次。讓我們首先考量一下在同步場(chǎng)效應(yīng)晶體管導(dǎo)通之前會(huì)發(fā)生什么。由于在死區(qū)時(shí)間內(nèi)電流將流經(jīng)體二極管,因此有些負(fù)載電流將作為積累電荷(Qrr)被捕獲。
當(dāng)同步場(chǎng)效應(yīng)晶體管導(dǎo)通時(shí),則積累的電荷在MOSFET內(nèi)部釋放。因此,部分負(fù)載電流由于Qrr效應(yīng)而損耗,導(dǎo)致同步場(chǎng)效應(yīng)晶體管內(nèi)產(chǎn)生I2R損耗。
在第二種情況下,當(dāng)高邊MOSFET導(dǎo)通時(shí),MOSFET的體二極管再次發(fā)生反向偏置。附加電流Irr會(huì)短暫流經(jīng)高邊MOSFET,直到積累的電荷Qrr完全耗盡。電荷耗盡不是瞬間完成的,Irr通常會(huì)流動(dòng)幾十納秒,直到Qrr耗盡。反向恢復(fù)時(shí)間Trr被引用于數(shù)據(jù)表中。在這種情況下,Irr會(huì)在高邊MOSFET中導(dǎo)致額外的I2R損耗,如圖1所示。
圖1:Irr導(dǎo)致高邊MOSFET中額外的I2R損耗
Vds尖峰
反向恢復(fù)電流尖峰Irr也與PCB的寄生電感相互作用,產(chǎn)生電壓尖峰,其中:
V = L x (di/dt)。
MOSFET的耐壓值選擇應(yīng)該適當(dāng),以確保擊穿電壓額定值(BVDS)高于最大尖峰值;通常采用80%降額。測(cè)量的尖峰值為80V 時(shí),Vds的耐壓一般要求采用BVDS至少100V的MOSFET。
柵極擾動(dòng)
當(dāng)Vds尖峰出現(xiàn)時(shí),設(shè)計(jì)人員還應(yīng)該在他們的應(yīng)用中查看柵極擾動(dòng)。由于MOSFET的所有三個(gè)端子之間都有電容,因此漏極引腳上的任何尖峰也將通過電容耦合到MOSFET的柵極引腳上。在極端情況下,如果柵極擾動(dòng)超過MOSFET的閾值電壓,則MOSFET會(huì)進(jìn)入導(dǎo)通狀態(tài)。
預(yù)驅(qū)電路通常需要設(shè)置死區(qū)時(shí)間,以保證高邊MOSFET和低邊MOSFET不能同時(shí)導(dǎo)通。但是,當(dāng)柵極擾動(dòng)發(fā)生時(shí),低邊與高邊MOSFET同時(shí)導(dǎo)通,導(dǎo)致直通電流在電源軌之間流動(dòng),從而引起I2R損耗過大,在極端情況下會(huì)導(dǎo)致MOSFET損壞。
所有MOSFET都不是相同的
對(duì)于100V MOSFET,在4~8mΩ導(dǎo)通電阻區(qū)間內(nèi)就不同MOSFET供應(yīng)商的數(shù)據(jù)表參數(shù)進(jìn)行比較時(shí),可以發(fā)現(xiàn)不同供應(yīng)商的Qrr存在很大差異。對(duì)于具有類似導(dǎo)通電阻的MOSFET,安世半導(dǎo)體的NextPower 100V技術(shù)提供的Qrr通常比其他MOSFET供應(yīng)商低30%到100%。
在典型應(yīng)用中,因?yàn)楹茈y分離和測(cè)量單個(gè)Qrr效應(yīng),因此我們依賴于仿真來模擬其效應(yīng)。
對(duì)7mΩ MOSFET PSMN6R9-100YSF的Spice 仿真顯示,當(dāng)Qrr增大至2倍時(shí),產(chǎn)生的尖峰電壓可以增加約8%,如圖2所示。
圖2:通過一款7mΩ MOSFET的Spice仿真顯示,當(dāng)Qrr增大至2倍時(shí),產(chǎn)生的尖峰電壓增加約8%
選擇低Qrr MOSFET也可以顯著提高效率,特別是在低負(fù)載電流下。
結(jié)論
在低功耗充電器和適配器產(chǎn)品應(yīng)用中,其開關(guān)頻率高且負(fù)載電流一般小于5A,對(duì)I2R損耗的關(guān)注較少,設(shè)計(jì)工程師應(yīng)密切關(guān)注動(dòng)態(tài)損耗。選擇低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI輻射,如圖3所示。
圖3:低Qrr MOSFET可以降低尖峰值,提高效率,降低EMI輻射
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢(shì)
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車拋負(fù)載Load Dump
- 50%的年長者可能會(huì)聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
- 攻略:7種傾斜傳感器的設(shè)計(jì)選擇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲(chǔ)器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi
Wi-Fi芯片
window8
WPG
XILINX
Zigbee
ZigBee Pro
安規(guī)電容
按鈕開關(guān)
白色家電
保護(hù)器件
保險(xiǎn)絲管