高速ADC的電源設(shè)計(jì)
發(fā)布時(shí)間:2017-06-02 來源:Rob Reeder 責(zé)任編輯:wenwei
【導(dǎo)讀】如今,在設(shè)計(jì)人員面臨眾多電源選擇的情況下,為高速ADC設(shè)計(jì)清潔電源時(shí)可能會面臨巨大挑戰(zhàn)。在利用高效開關(guān)電源而非傳統(tǒng)LDO的場合,這尤其重要。此外,多數(shù)ADC并未給出高頻電源抑制規(guī)格,這是選擇正確電源的一個(gè)關(guān)鍵因素。
本技術(shù)文章將描述用于測量轉(zhuǎn)換器AC電源抑制性能的技術(shù),由此為轉(zhuǎn)換器電源噪聲靈敏度確立一個(gè)基準(zhǔn)。我們將對一個(gè)實(shí)際電源進(jìn)行的簡單噪聲分析,展示如何把這些數(shù)值應(yīng)用于設(shè)計(jì)當(dāng)中,以驗(yàn)證電源是否能滿足所選轉(zhuǎn)換器的要求??傊疚膶⒚枋鲆恍┖唵蔚闹笇?dǎo)方針,以便帶給用戶一些指導(dǎo),幫助其為高速轉(zhuǎn)換器設(shè)計(jì)電源。
當(dāng)今許多應(yīng)用都要求高速采樣模數(shù)轉(zhuǎn)換器(ADC)具有12位或以上的分辨率,以便用戶能夠進(jìn)行更精確的系統(tǒng)測量。然而,更高分辨率也意味著系統(tǒng)對噪聲更加敏感。系統(tǒng)分辨率每提高一位,例如從12位提高到13位,系統(tǒng)對噪聲的敏感度就會提高一倍。因此,對于ADC設(shè)計(jì),設(shè)計(jì)人員必須考慮一個(gè)常常被遺忘的噪聲源——系統(tǒng)電源。ADC屬于 敏感型器件,每個(gè)輸入(即模擬、時(shí)鐘和電源輸入)均應(yīng)平等對待,以便如數(shù)據(jù)手冊所述,實(shí)現(xiàn)最佳性能。噪聲來源眾多,形式多樣,噪聲輻射會影響性能。
圖1
當(dāng)今電子業(yè)界的時(shí)髦概念是新設(shè)計(jì)在降低成本的同時(shí)還要“綠色環(huán)保”。具體到便攜式應(yīng)用,它要求降低功耗、簡化熱管理、最大化電源效率并延長電池使用時(shí)間。然而,大多數(shù)ADC的數(shù)據(jù)手冊建議使用線性電源,因?yàn)槠湓肼暤陀陂_關(guān)電源。這在某些情況下可能確實(shí)如此,但新的技術(shù)發(fā)展證明,開關(guān)電源可以也用于通信和醫(yī)療應(yīng)用(見參考文獻(xiàn) 部分的“How to Test Power Supply Rejection Ratio (PSRR) in an ADC”(如何測試ADC中的電源抑制比(PSRR)))。
本文介紹對于了解高速ADC電源設(shè)計(jì)至關(guān)重要的各種測試測量方法。為了確定轉(zhuǎn)換器對供電軌噪聲影響的敏感度,以及確定供電軌必須處于何種噪聲水平才能使ADC實(shí)現(xiàn)預(yù)期性能,有兩種測試十分有用:一般稱為電源抑制比(PSRR)和電源調(diào)制比(PSMR)。
模擬電源引腳詳解
一般不認(rèn)為電源引腳是輸入,但實(shí)際上它確實(shí)是輸入。它對噪聲和失真的敏感度可以像時(shí)鐘和模擬輸入引腳一樣敏感。即使進(jìn)入電源引腳的信號實(shí)際上是直流,而且一般不會出現(xiàn)重復(fù)性波動,但直流偏置上仍然存在有定量的噪聲和失真。導(dǎo)致這種噪聲的原因可能是內(nèi)部因素,也可能是外部因素,結(jié)果會影響轉(zhuǎn)換器的性能。
想想經(jīng)典的應(yīng)用案例,其中,轉(zhuǎn)換器采樣時(shí)鐘信號中有噪聲或抖動。采樣時(shí)鐘上的抖動可能表現(xiàn)為近載波噪聲,并且/或者還可能表現(xiàn)為寬帶噪聲。這兩種噪聲都取決于所使用的振蕩器和系統(tǒng)時(shí)鐘電路。即使把理想的模擬輸入信號提供給理想的ADC,時(shí)鐘雜質(zhì)也會在輸出頻譜上有所表現(xiàn),如圖2所示。
圖2. 采樣時(shí)鐘噪聲對理想數(shù)字化正弦波的影響
由該圖可以推論出是電源引腳。用一個(gè)模擬電源引腳(AVDD)代替圖2中的采樣時(shí)鐘輸入引腳。相同的原理在此同樣適用,即任何噪聲(近載波噪聲或?qū)拵г肼?將以這種卷積方式出現(xiàn)在輸出頻譜上。然而,有一點(diǎn)不同;可以將電源引腳視為帶一個(gè)40 dB至60 dB的衰減器(具體取決于工藝和電路拓?fù)浣Y(jié)構(gòu))的寬帶輸入引腳。在通用型MOS電路 結(jié)構(gòu)中,任何源極引腳或漏極引腳在本質(zhì)上都是與信號路徑相隔離的(呈阻性),從而帶來大量衰減,柵極引腳或信號路徑則不是這樣。假定該設(shè)計(jì)采用正確的 電路結(jié)構(gòu)類型來使隔離效果達(dá)到最大化。在電源噪聲非常明顯的情況下,有些類型(如共源極)可能并不是十分合適,因?yàn)殡娫词峭ㄟ^阻性元件偏置的,而該阻性元件后來又連接到輸出 級,如圖3和圖4所示。AVDD引腳上的任何調(diào)制、噪聲等可能更容易表現(xiàn)出來,從而對局部和/鄰近電路造成影響。這正是需要了解并探索轉(zhuǎn)換器PSRR數(shù)據(jù)的原因所在。
圖3. 不同的電路拓?fù)浣Y(jié)構(gòu)——實(shí)現(xiàn)方案A
圖4. 不同的電路拓?fù)浣Y(jié)構(gòu)——實(shí)現(xiàn)方案B
正如不同實(shí)現(xiàn)方式所示,存在寄生R、C和失配造成的不同頻率特性。記住,工藝也在不斷變小,隨著工藝的變小,可用帶寬就會增加,可用速率也會提升??紤]到這一點(diǎn),這意味著更低的電源和更小的閾值。為此,為什么不把電源節(jié)點(diǎn)當(dāng)作高帶寬輸入呢,就像采樣時(shí)鐘或模擬輸入引腳一樣呢?
何謂電源抑制
當(dāng)供電軌上有噪聲時(shí),決定ADC性能的因素主要有三個(gè),它們是PSRR-dc、PSRR-ac和PSMR。PSRR-dc指電源電壓的變化與由此產(chǎn)生的ADC增益或失調(diào)誤差的變化之比值,它可以用最低有效位(LSB)的分?jǐn)?shù)、百分比或?qū)?shù)dB (PSR = 20 × log10 (PSRR))來表示,通常規(guī)定采用直流條件。
但是,這種方法只能揭示ADC的一個(gè)額定參數(shù)隨電源電壓可能會如何變化,因此無法證明轉(zhuǎn)換器的穩(wěn)定性。更好的方法是在直流電源之上施加一個(gè)交流信號,然后測試電源抑制性能(PSRR-ac),從而主動通過轉(zhuǎn)換器電路耦合信號(噪聲源)。這種方法本質(zhì)上是對轉(zhuǎn)換器進(jìn)行衰減,將其自身表現(xiàn)為雜散(噪聲),它會在某一給定幅度升高至轉(zhuǎn)換器 噪底以上。其意義是表明在注入噪聲和幅度給定的條件下轉(zhuǎn)換器何時(shí)會崩潰。同時(shí),這也能讓設(shè)計(jì)人員了解到多大的電源噪聲會影響信號或加入到信號中。PSMR則以不同的方式影響轉(zhuǎn)換器,它表明當(dāng)與施加的模擬輸入信號進(jìn)行調(diào)制時(shí),轉(zhuǎn)換器對電源噪聲影響的敏感度。這種影響表現(xiàn)為施加于轉(zhuǎn)換器的IF頻率附近的調(diào)制,如果電源設(shè)計(jì)不嚴(yán) 謹(jǐn),它可能會嚴(yán)重破壞載波邊帶。
總之,電源噪聲應(yīng)當(dāng)像轉(zhuǎn)換器的任何其他輸入一樣進(jìn)行測試和處理。用戶必須了解系統(tǒng)電源噪聲,否則電源噪聲會提高轉(zhuǎn)換器噪底,限制整個(gè)系統(tǒng)的動態(tài)范圍。
電源測試
圖6所示為在系統(tǒng)板上測量ADC PSRR的設(shè)置。分別測量每個(gè)電源,以便更好地了解當(dāng)一個(gè)交流信號施加于待測電源之上時(shí),ADC的動態(tài)特性。開始時(shí)使用一個(gè)高容值電容,例如100 µF非極化電解質(zhì)電容。電感使用1 mH,充當(dāng)直流電源的交流阻塞器,一般將它稱為“偏置-T”,可以購買采用連接器式封裝的產(chǎn)品。
使用示波器測量交流信號的幅度,將一個(gè)示波器探針放在電源進(jìn)入待測ADC的電源引腳上。為簡化起見,將施加于電源上的交流信號量定義為一個(gè)與轉(zhuǎn)換器輸入滿量程相關(guān)的值。例如,如果ADC的滿量程為2V p-p,則使用200 mV p-p或–20 dB。接下來讓轉(zhuǎn)換器的輸入端接地(不施加模擬信號), 查找噪底/FFT頻譜中處于測試頻率的誤差雜散,如圖5所示。若要計(jì)算PSRR,只需從FFT頻譜上所示的誤差雜散值中減去–20 dB即可。例如,如果誤差雜散出現(xiàn)在噪底的–80 dB處,則PSRR為–80 dB – –20 dB,即–60 dB(PSRR = 誤差雜散(dB) – 示波器測量結(jié)果(dB))。–60 dB的值似乎并不大,但如果換算成電壓,它相當(dāng)于1 mV/V(或10−60/20),這個(gè)數(shù)字對于任何轉(zhuǎn)換器數(shù)據(jù)手冊中的PSRR規(guī)格而言都并不鮮見。
圖5. PSRR—FFT頻譜示例
圖6. 典型的PSRR測試設(shè)置
下一步是改變交流信號的頻率和幅度,以便確定ADC在系統(tǒng)板中的PSRR特性。數(shù)據(jù)手冊中的大部分?jǐn)?shù)值是典型值,可能只針對最差工作條件或最差性能的電源。例如,相對于其他電源,5 V模擬電源可能是最差的。應(yīng)確保所有電源的特性都有說明,如果說明得不全面,請咨詢廠家。這樣,設(shè)計(jì)人員將能為每個(gè)電源設(shè)置適當(dāng)?shù)脑O(shè)計(jì)約束條件。
請記住,使用LC配置測試PSRR/PSMR時(shí)有一個(gè)缺點(diǎn)。當(dāng)掃描目標(biāo)頻段時(shí),為使ADC電源引腳達(dá)到所需的輸入電平,波形發(fā)生器輸出端所需的信號電平可能非常高。這是因?yàn)長C配置會在某一頻率(該頻率取決于所選的值)形成陷波濾波器。這會大大增加陷波濾波器處的接地電流,該電流可能會進(jìn)入模擬輸入端。要解決這一問題,只需在測試頻率 造成測量困難時(shí)換入新的LC值。這里還應(yīng)注意,LC網(wǎng)絡(luò)在直流條件下也會發(fā)生損耗。記住要在ADC的電源引腳上測量直流電源,以便補(bǔ)償該損耗。例如,5 V電源經(jīng)過LC網(wǎng)絡(luò)后,系統(tǒng)板上可能只有4.8 V。要補(bǔ)償該損耗,只需升高電源電壓即可。
PSMR的測量方式基本上與PSRR相同。不過在測量PSMR時(shí),需將一個(gè)模擬輸入頻率施加于測試設(shè)置,如圖7所示。
圖7. 典型的PSMR測試設(shè)置
另一個(gè)區(qū)別是僅在低頻施加調(diào)制或誤差信號,目的是查看此信號與施加于轉(zhuǎn)換器的模擬輸入頻率的混頻效應(yīng)。對于這種測試,通常使用1 kHz至100 kHz頻率。只要能在基頻周圍看到誤差信號即混頻結(jié)果,則說明誤差信號的幅度可以保持相對恒定。但也不妨改變所施加的調(diào)制誤差信號幅度,以便進(jìn)行檢查,確保此值恒定。為了獲得最終結(jié)果, 最高(最差)調(diào)制雜散相對于基頻的幅度之差將決定PSMR規(guī)格。圖8所示為實(shí)測PSMR FFT頻譜的示例。
圖8. PSMR—部分FFT頻譜示例
電源噪聲分析
對于轉(zhuǎn)換器和最終的系統(tǒng)而言,必須確保任意給定輸入上的噪聲不會影響性能。前面已經(jīng)介紹了PSRR和PSMR及其重要意義,下面將通過一個(gè)示例說明如何應(yīng)用所測得的數(shù)值。該示例將有助于設(shè)計(jì)人員明白,為了了解電源噪聲并滿足系統(tǒng)設(shè)計(jì)需求,應(yīng)當(dāng)注意哪些方面以及如何正確設(shè)計(jì)。
首先,選擇轉(zhuǎn)換器,然后選擇調(diào)節(jié)器、LDO、開關(guān)調(diào)節(jié)器等。并非所有調(diào)節(jié)器都適用。應(yīng)當(dāng)查看調(diào)節(jié)器數(shù)據(jù)手冊中的噪聲和紋波指標(biāo),以及開關(guān)頻率(如果使用開關(guān)調(diào)節(jié)器)。典型調(diào)節(jié)器在100 kHz帶寬內(nèi)可能具有10 µV rms噪聲。假設(shè)該噪聲為白噪聲,則它在目標(biāo)頻段內(nèi)相當(dāng)于31.6 nV rms/√Hz的噪聲密度。
接著檢查轉(zhuǎn)換器的電源抑制指標(biāo),了解轉(zhuǎn)換器的性能何時(shí)會因?yàn)殡娫丛肼暥陆?。在第一奈奎斯特區(qū)fS/2,大多數(shù) 高速轉(zhuǎn)換器的PSRR典型值為60 dB (1 mV/V)。如果數(shù)據(jù)手冊 未給出該值,請按照前述方法進(jìn)行測量,或者詢問廠家。
使用一個(gè)2 V p-p滿量程輸入范圍、78 dB SNR和125 MSPS采樣速率的16位ADC,其噪底為11.26 nV rms。任何來源的噪聲都必須低于此值,以防其影響轉(zhuǎn)換器。在第一奈奎斯特區(qū),轉(zhuǎn)換器噪聲將是89.02 µV rms (11.26 nV rms/√Hz) × √(125 MHz/2)。雖然調(diào)節(jié)器的噪聲(31.6 nv/√Hz)是轉(zhuǎn)換器的兩倍以上,但轉(zhuǎn)換器有60 dB的PSRR,它會將開關(guān)調(diào)節(jié)器的噪聲抑制到31.6 pV/√Hz (31.6 nV/√Hz × 1 mV/V)。這一噪聲比轉(zhuǎn)換器的噪底小得多,因此調(diào)節(jié)器的噪聲不會降低轉(zhuǎn)換器的性能。
電源濾波、接地和布局同樣重要。在ADC電源引腳上增加0.1 µF電容可使噪聲低于前述計(jì)算值。請記住,某些電源引腳吸取的電流較多,或者比其他電源引腳更敏感。因此應(yīng)當(dāng)慎用去耦電容,但要注意某些電源引腳可能需要額外的去耦電容。在電源輸出端增加一個(gè)簡單的LC濾波器也有助 于降低噪聲。不過,當(dāng)使用開關(guān)調(diào)節(jié)器時(shí),級聯(lián)濾波器能將噪聲抑制到更低水平。需要記住的是,每增加一級增益就會每10倍頻程增加大約20 dB。
最后需要注意的一點(diǎn)是,這種分析僅針對單個(gè)轉(zhuǎn)換器而言。如果系統(tǒng)涉及到多個(gè)轉(zhuǎn)換器或通道,噪聲分析將有所不同。例如,超聲系統(tǒng)采用許多ADC通道,這些通道以數(shù)字方式求和來提高動態(tài)范圍?;径裕ǖ罃?shù)量每增加一倍,轉(zhuǎn)換器/系統(tǒng)的噪底就會降低3 dB。對于上例,如果使用兩個(gè)轉(zhuǎn)換器,轉(zhuǎn)換器的噪底將變?yōu)橐话?−3 dB);如果 使用四個(gè)轉(zhuǎn)換器,噪底將變?yōu)?minus;6 dB。之所以如此,是因?yàn)槊總€(gè)轉(zhuǎn)換器可以當(dāng)作不相關(guān)的噪聲源來對待。不相關(guān)噪聲源彼此之間是獨(dú)立的,因此可以進(jìn)行RSS(平方和的平方根)計(jì)算。最終,隨著通道數(shù)量增加,系統(tǒng)的噪底降低,系統(tǒng)將變得更敏感,對電源的設(shè)計(jì)約束條件也更嚴(yán)格。
結(jié)論
要想消除應(yīng)用中的所有電源噪聲是不可能的。任何系統(tǒng)都不可能完全不受電源噪聲的影響。因此,作為ADC的用戶,設(shè)計(jì)人員必須在電源設(shè)計(jì)和布局布線階段就做好積極應(yīng)對。下面是一些有用的提示,可幫助設(shè)計(jì)人員最大程度地提高PCB對電源變化的抗擾度:
對到達(dá)系統(tǒng)板的所有電源軌和總線電壓去耦。
記?。好吭黾右患壴鲆婢蜁?0倍頻程增加大約20 dB。
如果電源引線較長并為特定IC、器件和/或區(qū)域供電,則應(yīng)再次去耦。
對高頻和低頻都要去耦。
去耦電容接地前的電源入口點(diǎn)常常使用串聯(lián)鐵氧體磁珠。對進(jìn)入系統(tǒng)板的每個(gè)電源電壓都要這樣做,無論它是來自LDO還是來自開關(guān)調(diào)節(jié)器。
對于加入的電容,應(yīng)使用緊密疊置的電源和接地層(間距≤4密爾),從而使PCB設(shè)計(jì)本身具備高頻去耦能力。
同任何良好的電路板布局一樣,電源應(yīng)遠(yuǎn)離敏感的模擬電路,如ADC的前端級和時(shí)鐘電路等。
良好的電路分割至關(guān)重要,可以將一些元件放在PCB的背面以增強(qiáng)隔離。
注意接地返回路徑,特別是數(shù)字側(cè),確保數(shù)字瞬變不會返回到電路板的模擬部分。某些情況下,分離接地層也可能有用。
將模擬和數(shù)字參考元件保持在各自的層面上。這一常規(guī)做法可增強(qiáng)對噪聲和耦合交互作用的隔離。
遵循IC制造商的建議;如果應(yīng)用筆記或數(shù)據(jù)手冊沒有直接說明,則應(yīng)研究評估板。這些都是非常好的起步工具。
這篇技術(shù)文章旨在清楚說明高速轉(zhuǎn)換器的電源敏感問題,以及它為何對用戶的系統(tǒng)動態(tài)范圍如此重要。為使系統(tǒng)板上的ADC實(shí)現(xiàn)數(shù)據(jù)手冊所述的性能規(guī)格,設(shè)計(jì)人員應(yīng)當(dāng)了解所需的布局布線技術(shù)和硬件。
參考電路
“How to Test Power Supply Rejection Ratio (PSRR) in an ADC”. EETimes. July 2003.
“Designing with Switching Regulators in High Speed A/D Converter Applications”. ADI Webinar. June 2009.
Motchenbacher, C.D. and J.A. Connelly. 1993. Low-Noise Electronic System Design. Wiley.
Circuit Note CN-0135, Powering the AD9272 Octal Ultrasound ADC/LNA/VGA/AAF with the ADP5020 Switching Regulator PMU for Increased Efficiency. www.analog.com/CN0135
Circuit Note CN-0137, Powering the AD9268 Dual Channel, 16-bit, 125 MSPS Analog-to-Digital Converter with the ADP2114 Synchronous Step-Down DC-to-DC Regulator for Increased Efficiency. www.analog.com/CN0137
推薦閱讀:
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車拋負(fù)載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
- 攻略:7種傾斜傳感器的設(shè)計(jì)選擇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)