智能負(fù)載管理和負(fù)載電流感測
發(fā)布時間:2018-05-31 來源:Scott Deuty 責(zé)任編輯:wenwei
【導(dǎo)讀】對大部分負(fù)載管理電路來說,MOSFET正在迅速取代繼電器成為首選的開關(guān)技術(shù),電力電子系統(tǒng)的維護(hù)成本也隨之降低。本文講述了輸出電流的控制和感測基礎(chǔ),并分析了一種智能負(fù)載管理產(chǎn)品。
隨著微處理器對電力電子控制能力的增強(qiáng),管理負(fù)載電流益發(fā)行之有效,而不再是不堪的惡夢。在本文中,我們從基本的輸出電流控制和感測開始,然后介紹一種智能負(fù)載管理產(chǎn)品。
輸出電流控制技術(shù)隨半導(dǎo)體開關(guān)的進(jìn)步而發(fā)展。對大多數(shù)負(fù)載管理電路來說,MOSFET晶體管正在迅速取代繼電器成為所選擇的開關(guān)技術(shù)。有兩種方法可將MOSFET晶體管插入到電路中:
1.作為高側(cè)P溝道開關(guān)
2.作為低側(cè)N溝道開關(guān)
對兩種MOSFET晶體管類型做一個快速回顧,我們可以記起來,P溝道MOSFET是通過將柵極電壓拉到比源極電壓更低來進(jìn)行柵控的;而N溝道MOSFET的柵極是由比源極更高的電壓來導(dǎo)通的。另外,其電流方向是相反的。這兩個因素決定了與饋入負(fù)載的電壓和電流相關(guān)的開關(guān)方向。
圖1:N溝道和P溝道MOSFET。
圖2顯示了P溝道MOSFET作為負(fù)載開關(guān)時的優(yōu)勢:P溝道控制電流流入地面,而N溝道控制電流流出地面(通常稱為“返回”)。
圖2:P溝道器件作為負(fù)載開關(guān)時具有優(yōu)勢。
在這兩種情況下,柵極電壓都必須超過器件的閾值電壓,才能將器件作為歐姆區(qū)(ohmic region)中的開關(guān)完全開啟。請注意,這里的討論集中在增強(qiáng)型P溝道和N溝道MOSFET。不同類型的JFET具有不同的柵控要求。
圖3:本文著眼于增強(qiáng)型MOSFET。
從器件操作回到負(fù)載管理電路,圖4所示是將高壓側(cè)p-FET用作開關(guān)元件,它還用了一個安森美的N溝道efuse產(chǎn)品。
圖4:高壓側(cè)p-FET作為開關(guān)元件。
圖5所示是低側(cè)(返回側(cè))n-FET作為開關(guān)元件,使用了安森美的N溝道efuse產(chǎn)品。雖然N溝道MOSFET比P溝道MOSFET約小三分之一,因此成本也更低,但由于P溝道MOSFET能保持合適的接地參考(參考圖5中N溝道n-FET開關(guān)位置,對地參考“隔斷”),所以使用P溝道MOSFET進(jìn)行負(fù)載管理更好。
圖5:低側(cè)(返回側(cè))n-FET作為開關(guān)元件。
efuse是一個重要的進(jìn)步,因?yàn)樗试S在極性反接、輸出短路或過電流情況下開啟電路。以類似的方式,也可以監(jiān)測和控制流過開關(guān)的電流。事實(shí)上,如果柵控不正確,會發(fā)生開關(guān)振蕩。
盡管半導(dǎo)體不會像繼電器那樣表現(xiàn)出開關(guān)反彈,但仍有可能出現(xiàn)不需要的振鈴。
本文將著眼于高側(cè)電流感測。高側(cè)電流感測可以通過模擬電路進(jìn)行控制,同時高側(cè)電流的數(shù)字控制也在向更高水平推進(jìn)。這些開關(guān)內(nèi)置了智能功能,包括可以反饋給微處理器的可編程電流水平和數(shù)字化電流水平讀數(shù)。這些信息被存儲在專門處理事件定時采樣的微處理器中,從而創(chuàng)建記錄水平歷史。然后使用軟件確定負(fù)載電流隨時間的變化。該信息與編程的閾值進(jìn)行比較,并能提醒用戶發(fā)生的變化。
在繼電器負(fù)載的情況下,利用這些信息可以對即將發(fā)生的組件故障發(fā)出告警。這種智能負(fù)載管理產(chǎn)品可以作為一個單獨(dú)實(shí)體運(yùn)行,也可與智能電源一起使用。與智能電源一起使用時,可以采用RS-485通信進(jìn)行可編程負(fù)載監(jiān)控和實(shí)時更新。
負(fù)載管理能力的增強(qiáng)正在改變電力行業(yè)。數(shù)字控制能力變得更精確、更可調(diào),系統(tǒng)性能和可靠性也得到提高,因而能夠預(yù)測故障。這樣的話,便不必再僅僅為了更換一條熔斷的保險就下派技術(shù)人員到現(xiàn)場,從而降低了維護(hù)成本。
本文轉(zhuǎn)載自電子技術(shù)設(shè)計(jì)。
推薦閱讀:
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車拋負(fù)載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
- 攻略:7種傾斜傳感器的設(shè)計(jì)選擇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)