圖 1 顯示電源和負(fù)載之間存在電阻??梢酝ㄟ^略微提高電源 生成的電壓,來補償該電阻上的電壓損耗。不幸的是,線路 電阻上產(chǎn)生的電壓降取決于負(fù)載電流,即流過線路的電流。 相較于低電流,高電流會導(dǎo)致更高的電壓降。因此,負(fù)載由 精度相當(dāng)?shù)偷恼{(diào)節(jié)電壓供電,而調(diào)節(jié)電壓取決于線路電阻和 相應(yīng)的電流。
如何防止由電源線引起的電壓波動?
發(fā)布時間:2019-06-28 責(zé)任編輯:lina
【導(dǎo)讀】當(dāng)采用降壓型穩(wěn)壓器或線性穩(wěn)壓器電源時,一般是將電壓調(diào)節(jié)為設(shè)定值來為負(fù)載供電。在一些應(yīng)用中(例如,實驗室電源或 需采用較長電纜連接各種元件的電子系統(tǒng)),由于互連線上存 在各種電壓降,因此無法確保在所需位置點始終提供準(zhǔn)確的穩(wěn) 壓電壓??刂凭热Q于許多參數(shù)。
當(dāng)采用降壓型穩(wěn)壓器或線性穩(wěn)壓器電源時,一般是將電壓調(diào)節(jié)為設(shè)定值來為負(fù)載供電。在一些應(yīng)用中(例如,實驗室電源或 需采用較長電纜連接各種元件的電子系統(tǒng)),由于互連線上存 在各種電壓降,因此無法確保在所需位置點始終提供準(zhǔn)確的穩(wěn) 壓電壓??刂凭热Q于許多參數(shù)。一個是負(fù)載需要連續(xù)恒定 電流時的直流電壓精度。另一個是生成電壓的交流精度,這取 決于生成的電壓如何隨負(fù)載瞬變而變化。影響直流電壓精度的 因素包括所需的基準(zhǔn)電壓(可能是一個電阻分壓器)、誤差放大器的行為以及電源的一些其他影響因素。影響交流電壓精度 的關(guān)鍵因素包括所選的功率等級、后備電容以及控制環(huán)路的架構(gòu)與設(shè)計。
然而,除了所有這些會影響生成的電源電壓精度的因素以外,還必須考慮其他影響。如果電源與所需供電的負(fù)載空間分離,則在穩(wěn)壓電壓和需要電能的位置之間將存在電壓降。該電壓降 取決于穩(wěn)壓器和負(fù)載之間的電阻。它可能是帶插頭觸點的電纜 或電路板上的較長走線。
圖 1 顯示電源和負(fù)載之間存在電阻??梢酝ㄟ^略微提高電源 生成的電壓,來補償該電阻上的電壓損耗。不幸的是,線路 電阻上產(chǎn)生的電壓降取決于負(fù)載電流,即流過線路的電流。 相較于低電流,高電流會導(dǎo)致更高的電壓降。因此,負(fù)載由 精度相當(dāng)?shù)偷恼{(diào)節(jié)電壓供電,而調(diào)節(jié)電壓取決于線路電阻和 相應(yīng)的電流。
對于這個問題早就有了解決方案??膳c實際連線并聯(lián),額外增 加一對連接。采用開爾文檢測線測量電子負(fù)載側(cè)的電壓。在圖 1 中,這些額外的線路顯示為紅色。然后將這些測量值整合到電 源側(cè)的電源電壓控制中。這種方式很有效,但缺點是需要額外 的檢測引線。由于無需承載高電流,這類引線的直徑通常非常 小。然而,在連接電纜中設(shè)置測量線以獲得更高的電流會帶來 額外的工作量和更高的成本。
無需額外的一對檢測引線,也可以對電源和負(fù)載之間連接線上 的電壓降進行補償。對于一些電纜布線復(fù)雜、成本高昂并且所 產(chǎn)生的 EMC 干擾很容易耦合到電壓測試引線的應(yīng)用而言,這一 點特別有意義。第二種方案是使用 LT6110 這類專用線路壓降補 償 IC。將此 IC 插入電壓發(fā)生側(cè),并測量進入連接線之前的電流。 然后根據(jù)測得的電流來調(diào)節(jié)電源的輸出電壓,從而能夠非常精 確地調(diào)節(jié)負(fù)載側(cè)電壓,而不用考慮負(fù)載電流。
采用 LT6110 這類元件,就可以根據(jù)相應(yīng)的負(fù)載電流來調(diào)節(jié)電源電壓;不過,進行這種調(diào)節(jié)需要了解線路電阻相關(guān)信息。大多 數(shù)應(yīng)用都會提供此信息。如果在器件的使用壽命期間,將連接 線更換成更長或更短的連接線,則還必須對采用 LT6110 實現(xiàn)的 電壓補償進行相應(yīng)調(diào)整。
如果在器件工作期間線路電阻可能會發(fā)生變化,可使用 LT4180 這類元件,在負(fù)載側(cè)具有輸入電容時,通過交流信號對連接線 電阻進行虛擬預(yù)測,從而為負(fù)載端提供高精度電壓。
圖 3 顯示了一個采用 LT4180 的應(yīng)用,其中傳輸線路的電阻 未知。線路輸入電壓根據(jù)相應(yīng)的線路電阻進行調(diào)節(jié)。使用 LT4180,無需開爾文檢測線路,只需逐步改變線路電流并測量 相應(yīng)的電壓變化即可實現(xiàn)電壓調(diào)節(jié)。利用測量結(jié)果確定未知線 路中的電壓損耗。根據(jù)電壓損耗信息實現(xiàn) DC/DC 轉(zhuǎn)換器輸出電 壓的最佳調(diào)節(jié)。
只要負(fù)載側(cè)的節(jié)點具有低交流阻抗,這種測量方式就很有效。 在許多應(yīng)用中都有效,因為長連接線之后的負(fù)載需要一定量的 能量存儲。由于阻抗低,可以對 DC/DC 轉(zhuǎn)換器的輸出電流進行 調(diào)節(jié),并通過測量連接線前側(cè)的電壓來確定線路電阻。
能否獲得穩(wěn)定的電源電壓不僅與電壓轉(zhuǎn)換器本身有關(guān),而且與 負(fù)載的電源線也有關(guān)。
結(jié)論
通過額外配置開爾文檢測線可以提高所需的直流精度。除此之 外,也可以使用集成電路來補償線路上的電壓降,無需開爾文 檢測線。如果開爾文檢測線的成本太高,或者必須使用現(xiàn)有線 路,且沒有額外的檢測線,這種方案會很有用。利用這些設(shè)計 技巧,可以很容易實現(xiàn)更高的電壓精度。
(來源:Frederik Dostal ADI 公司)
特別推薦
- 音頻放大器的 LLC 設(shè)計注意事項
- 服務(wù)器電源設(shè)計中的五大趨勢
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數(shù)!
- 功率器件熱設(shè)計基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計潛能,ASO.ai如何革新模擬IC設(shè)計
- 汽車拋負(fù)載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機
- 攻略:7種傾斜傳感器的設(shè)計選擇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護器
過熱保護
過壓保護