-
基本半導體第三代碳化硅肖特基二極管性能詳解
追求更低損耗、更高可靠性、更高性價比是碳化硅功率器件行業(yè)的共同目標。為不斷提升產品核心競爭力,基本半導體成功研發(fā)第三代碳化硅肖特基二極管,這是基本半導體系列標準封裝碳化硅肖特基二極管家族中的新成員。相較于前兩代二極管,基本半導體第三代碳化硅肖特基二極管在沿用6英寸晶圓工藝基礎上,實現(xiàn)了更高的電流密度、更小的元胞尺寸、更低的正向導通壓降。
2022-02-08
-
在當今高壓半導體器件上執(zhí)行擊穿電壓和漏流測量
在經過多年研究和設計之后,碳化硅(SiC)和氮化鎵 (GaN)功率器件正變得越來越實用。這些器件盡管性能很高,但它們也帶來了許多挑戰(zhàn),包括柵極驅動要求。SiC要求的柵極電壓(Vgs)要高得多,在負偏置電壓時會關閉。GaN的閾值電壓(Vth)則低得多,要求嚴格的柵極驅動設計。寬帶隙(WBG)器件由于物理特點,機身二極管壓降較高,因此對空轉時間和打開/關閉跳變的控制要求要更嚴格。
2022-01-27
-
IGBT和MOSFET該用誰?你選對了嗎?
半導體功率器件主要包括功率二極管、功率三極管、晶閘管、MOSFET、IGBT等。其中MOSFET和IGBT屬于電壓控制型開關器件,具有開關速度快、易于驅動、損耗低等優(yōu)勢。IGBT全稱是絕緣柵極型功率管,是由雙極型三極管(BJT)和MOSFET組成的復合全控型電壓驅動式半導體功率器件,兼有MOSFET的高輸入阻抗和BJT的低導通壓降兩方面的優(yōu)點。隨著新能源汽車、智能家電、5G、軌道交通等行業(yè)的興起,MOSFET和IGBT也迎來了發(fā)展的春天。
2022-01-26
-
IGBT集電極電壓超過額定電壓會發(fā)生什么?
我們常常被告誡:實際應用中,IGBT集電極電壓絕對不能超過額定值,否則器件有可能被擊穿。然后有的同學并不死心:如果我只超了一點點呢,1210V就會擊穿嗎?如果只是一個非常短非常短,比如只有1us的脈沖呢?功率器件也沒那么脆弱啊對不對?
2022-01-25
-
SiC MOSFET替代Si MOSFET,自舉電路是否適用?
自舉式懸浮驅動電路可以極大的簡化驅動電源的設計,只需要一路電源就可以驅動上下橋臂兩個開關管的驅動,可以節(jié)省Si MOSFET功率器件方案的成本。隨著新能源受到全球政府的推動與支持,與新能源相關的半導體芯片需求激増,導致產能緊缺。綠色低碳技術創(chuàng)新應用是實現(xiàn)碳中和目標的重要一環(huán),碳化硅是應用于綠色低碳領域的共用性技術,SiC MOSFET替代Si MOSEFET成為了許多廠商的新選擇。不過,SiC MOSFET的驅動與Si MOSFET到底有什么區(qū)別,替代時電路設計如何調整,是工程師非常關心的。我們《SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現(xiàn)負壓?》一文中已經分享了負壓自舉的小技巧。本文SiC MOSFET驅動常規(guī)自舉電路的注意事項。
2022-01-17
-
如何將CoolMOS應用于連續(xù)導通模式的圖騰柱功率因數校正電路
功率因素校正為將電源的輸入電流塑形為正弦波并與電源電壓同步,最大化地從電源汲取實際功率。 在完美的 PFC 電路中,輸入電壓與電流之間為純電阻關系,無任何輸入電流諧波。 目前,升壓拓撲是 PFC 最常見的拓撲。在效率和功率密度的表現(xiàn)上,必須要走向無橋型,才能進一步減少器件使用,減少功率器件數量與導通路徑上的損耗。 在其中,圖騰柱功率因素校正電路(totem-pole PFC)已證明為成功的拓撲結構,其控制法亦趨于成熟。
2021-11-25
-
分析無芯變壓器柵極驅動器
功率器件在工業(yè)和汽車系統(tǒng)的設計中起著決定性的作用。為了滿足這些應用的特定要求并縮短上市時間,ROHM使用專有的微制造工藝來開發(fā)無核片上變壓器,以實現(xiàn)穩(wěn)健的隔離,這對SiC技術尤其有用。碳化硅已被引入工業(yè)和汽車市場的廣泛應用中,包括太陽能逆變器,所有類型的高壓電源和汽車車載電池充電器。
2021-11-15
-
SRII重磅亮相CICD 2021,以先進ALD技術賦能第三代半導體產業(yè)
功率器件作為半導體產業(yè)的重要組成部分,擁有非常廣泛的技術分類以及應用場景。例如,傳統(tǒng)的硅基二極管、IGBT和MOSFET等產品經過數十年的發(fā)展,占據了絕對領先的市場份額。不過,隨著新能源汽車、數據中心、儲能、手機快充等應用的興起,擁有更高耐壓等級、更高開關頻率、更高性能的新型SiC、GaN等第三代半導體功率器件逐漸嶄露頭角,獲得了業(yè)界的持續(xù)關注。
2021-11-10
-
功率半導體的進步實現(xiàn)3級直流快速充電,解決電動汽車的里程焦慮
目前,電動汽車的使用仍受到阻礙,主要在于 “里程焦慮”問題,并且車主不愿在道路上等待數小時充電時間。然而,隨著全國各地部署越來越多的充電樁,“直流快速充電”有望將等待時間縮短至數分鐘。這些額定功率達350 kW的大功率充電樁,必須利用最新的電源轉換拓撲結構和半導體開關技術,以盡可能提高電能效來實現(xiàn)成本效益。本文將介紹這些大功率充電樁的典型設計方法,對功率器件的一些選擇,以及最新的寬禁帶半導體可帶來的優(yōu)勢。
2021-11-03
-
高功率器件驅動風向:隔離柵極驅動
D類音頻功率放大器的市場需求每年以約50%的速度增長,以高性能設備為目標應用。D類音頻放大器的高能效和低熱性等特點支持輕薄時尚的產品設計,大功率電源還可節(jié)省成本。D類放大器滿足小尺寸、低功耗、高音頻輸出的市場主流需求,從而成為音頻類產品的中堅力量。
2021-11-03
-
通用汽車與Wolfspeed達成戰(zhàn)略供應商協(xié)議,在通用汽車未來電動汽車計劃中采用SiC
2021年10月11日,美國密歇根州底特律市和北卡羅來納州達勒姆市訊 – 通用汽車(NYSE: GM)和 Wolfspeed, Inc.(NYSE: WOLF)于近日宣布達成一項戰(zhàn)略供應商協(xié)議,約定 Wolfspeed 為通用汽車的未來電動汽車計劃開發(fā)并提供碳化硅(SiC)功率器件解決方案。Wolfspeed SiC 器件將賦能通用汽車安裝更高效的電動汽車動力系統(tǒng),從而擴大其快速完善的電動汽車產品組合范圍。
2021-10-11
-
什么情況下應該從硅片轉換到寬帶隙技術?
自從寬帶隙 (WBG) 器件誕生以來,為功率變換應用帶來了一股令人激動的浪潮。但是,在什么情況下從硅片轉換到寬帶隙技術才有意義呢?迄今為止,屏蔽柵極 MOSFET、超級結器件和 IGBT等基于硅的功率器件已經很好地在業(yè)界得到大規(guī)模應用。這些器件在品質因數 (FoM) 方面不斷改進,加上在拓撲架構和開關機理等方面的進步,使工程師能夠實現(xiàn)更高的系統(tǒng)效率。
2021-09-15
- 音頻放大器的 LLC 設計注意事項
- 服務器電源設計中的五大趨勢
- 電子技術如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術:實現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數!
- 功率器件熱設計基礎(十三)——使用熱系數Ψth(j-top)獲取結溫信息
- IGBT并聯(lián)設計指南,拿下!
- 解鎖AI設計潛能,ASO.ai如何革新模擬IC設計
- 汽車拋負載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網交換機
- 攻略:7種傾斜傳感器的設計選擇
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall