-
功率器件的熱設計基礎(二)——熱阻的串聯(lián)和并聯(lián)
功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-11-12
-
功率器件熱設計基礎(一)——功率半導體的熱阻
功率半導體熱設計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-11-11
-
如何使用GaNFET設計四開關降壓-升壓DC-DC轉換器?
在不斷追求減小電路板尺寸和提高效率的征途中,氮化鎵場效應晶體管(GaNFET)功率器件已成為破解目前難題的理想選擇。GaN是一項新興技術,有望進一步提高功率、開關速度以及降低開關損耗。這些優(yōu)勢讓功率密度更高的解決方案成為可能。
2024-11-04
-
第8講:SiC外延生長技術
SiC外延生長技術是SiC功率器件制備的核心技術之一,外延質量直接影響SiC器件的性能。目前應用較多的SiC外延生長方法是化學氣相沉積(CVD),本文簡要介紹其生產(chǎn)過程及注意事項。
2024-11-04
-
遠山半導體發(fā)布新一代高壓氮化鎵功率器件
氮化鎵功率器件因其高速開關能力、高功率密度和成本效益而成為市場的熱門選擇。然而,由于工作電壓和長期可靠性的制約,這些器件的潛力并未得到充分發(fā)揮,主要在消費電子領域內競爭價格。近期,隨著高壓氮化鎵器件的陸續(xù)推出,我們看到了它們在更廣泛市場應用中的潛力。
2024-11-01
-
【泰克先進半導體實驗室】 遠山半導體發(fā)布新一代高壓氮化鎵功率器件
氮化鎵功率器件因其高速開關能力、高功率密度和成本效益而成為市場的熱門選擇。然而,由于工作電壓和長期可靠性的制約,這些器件的潛力并未得到充分發(fā)揮,主要在消費電子領域內競爭價格。近期,隨著高壓氮化鎵器件的陸續(xù)推出,我們看到了它們在更廣泛市場應用中的潛力。
2024-10-20
-
IGBT 還是 SiC ? 英飛凌新型混合功率器件助力新能源汽車實現(xiàn)高性價比電驅
近幾年新能源車發(fā)展迅猛,技術創(chuàng)新突飛猛進。如何設計更高效的牽引逆變器使整車獲得更長的續(xù)航里程一直是研發(fā)技術人員探討的最重要話題之一。高效的牽引逆變器需要在功率、效率和材料利用率之間取得適當?shù)钠胶狻?/p>
2024-09-25
-
第4講:SiC的物理特性
SiC作為半導體功率器件材料,具有許多優(yōu)異的特性。4H-SiC與Si、GaN的物理特性對比見表1。與Si相比,4H-SiC擁有10倍的擊穿電場強度,可實現(xiàn)高耐壓。與另一種寬禁帶半導體GaN相比,物理特性相似,但在p型器件導通控制和熱氧化工藝形成柵極氧化膜方面存在較大差異,4H-SiC在多用途功率MOS晶體管的制備方面具有優(yōu)勢。此外,由于GaN是直接躍遷型半導體,少數(shù)載流子壽命較短,因此通過電導調制效應來實現(xiàn)低導通電阻器件的效果并不理想。
2024-09-11
-
如何“榨干”SiC器件潛能?這幾種封裝技術提供了參考范例
隨著全球對可再生能源和清潔電力系統(tǒng)的需求不斷增長,光儲充一體化市場為實現(xiàn)能源的高效利用和優(yōu)化配置提供了創(chuàng)新解決方案。在此趨勢引領下,碳化硅(SiC)產(chǎn)業(yè)生態(tài)正迅速發(fā)展,逐漸成為替代傳統(tǒng)硅基功率器件的有力市場競爭者。
2024-09-03
-
OBC設計不斷升級,揭秘如何適應更高功率等級和電壓
消費者需求不斷攀升,電動汽車(EV)必須延長續(xù)航里程,方可與傳統(tǒng)的內燃機(ICE)汽車相媲美。解決這個問題主要有兩種方法:在不顯著增加電池尺寸或重量的情況下提升電池容量,或提高主驅逆變器等關鍵高功率器件的運行能效。為應對電子元件導通損耗和開關損耗造成的巨大功率損耗,汽車制造商正在通過提高電池電壓來增加車輛的續(xù)航里程。
2024-08-22
-
不斷改進 OBC 設計,適應更高的功率等級和電壓
消費者需求不斷攀升,電動汽車 (EV) 必須延長續(xù)航里程,方可與傳統(tǒng)的內燃機 (ICE) 汽車相媲美。解決這個問題主要有兩種方法:在不顯著增加電池尺寸或重量的情況下提升電池容量,或提高主驅逆變器等關鍵高功率器件的運行能效。
2024-08-08
-
第1講:三菱電機功率器件發(fā)展史
三菱電機從事功率半導體開發(fā)和生產(chǎn)已有六十多年的歷史,從早期的二極管、晶閘管,到MOSFET、IGBT和SiC器件,三菱電機一直致力于功率半導體芯片技術和封裝技術的研究探索,本篇章帶你了解三菱電機功率器件發(fā)展史。
2024-08-01
- 音頻放大器的 LLC 設計注意事項
- 服務器電源設計中的五大趨勢
- 電子技術如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術:實現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數(shù)!
- 功率器件熱設計基礎(十三)——使用熱系數(shù)Ψth(j-top)獲取結溫信息
- IGBT并聯(lián)設計指南,拿下!
- 解鎖AI設計潛能,ASO.ai如何革新模擬IC設計
- 汽車拋負載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機
- 攻略:7種傾斜傳感器的設計選擇
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall