14與16納米晶片差距在哪?為何惹得三星和臺積電“你追我趕”
發(fā)布時間:2015-06-23 責(zé)任編輯:sherry
【導(dǎo)讀】三星和臺積電這一對冤家近期在半導(dǎo)體制程上你追我趕,進(jìn)度不相上下。雙方均想憑借先進(jìn)的技術(shù)搶得圓代工中的大部分訂單,戰(zhàn)爭主要爆發(fā)在14與16納米之間。對外行來說,這兩納米的差距似乎并不大,其實不然。這其中的差距在哪?縮小制程面臨著那些難處?又有哪些優(yōu)勢?下面大家就隨小編一起來看看吧。
納米到底有多細(xì)微?
在開始之前,要先了解納米究竟是什么意思。在數(shù)學(xué)上,納米是0.000000001公尺,但這是個相當(dāng)差的例子,畢竟我們只看得到小數(shù)點后有很多個零,卻沒有實際的感覺。如果以指甲厚度做比較的話,或許會比較明顯。
用尺規(guī)實際測量的話可以得知指甲的厚度約為0.0001公尺(0.1毫米),也就是說試著把一片指甲的側(cè)面切成10萬條線,每條線就約等同于1納米,由此可略為想像得到1納米是何等的微小了。
知道納米有多小之后,還要理解縮小制程的用意,縮小電晶體的最主要目的,就是可以在更小的晶片中塞入更多的電晶體,讓晶片不會因技術(shù)提升而變得更大;其次,可以增加處理器的運(yùn)算效率;再者,減少體積也可以降低耗電量;最后,晶片體積縮小后,更容易塞入行動裝置中,滿足未來輕薄化的需求。
再回來探究納米制程是什么,以14納米為例,其制程是指在晶片中,線最小可以做到14納米的尺寸,下圖為傳統(tǒng)電晶體的長相,以此作為例子??s小電晶體的最主要目的就是為了要減少耗電量,然而要縮小哪個部分才能達(dá)到這個目的?圖1(a)中的L就是我們期望縮小的部分。藉由縮小閘極長度,電流可以用更短的路徑從Drain端到Source端(有興趣的話可以利用Google以MOSFET搜尋,會有更詳細(xì)的解釋)。
此外,電腦是以0和1作運(yùn)算,要如何以電晶體滿足這個目的呢?做法就是判斷電晶體是否有電流流通。當(dāng)在Gate端(綠色的方塊)做電壓供給,電流就會從Drain端到Source端,如果沒有供給電壓,電流就不會流動,這樣就可以表示1和0。
尺寸縮小有其物理限制
不過,制程并不能無限制的縮小,當(dāng)我們將電晶體縮小到20納米左右時,就會遇到量子物理中的問題,讓電晶體有漏電的現(xiàn)象,抵銷縮小L時獲得的效益。作為改善方式,就是導(dǎo)入FinFET(Tri-Gate)這個概念,如右上圖。在Intel以前所做的解釋中,可以知道藉由導(dǎo)入這個技術(shù),能減少因物理現(xiàn)象所導(dǎo)致的漏電現(xiàn)象。
更重要的是,藉由這個方法可以增加Gate端和下層的接觸面積。在傳統(tǒng)的做法中(左上圖),接觸面只有一個平面,但是采用FinFET(Tri-Gate)這個技術(shù)后,接觸面將變成立體,可以輕易的增加接觸面積,這樣就可以在保持一樣的接觸面積下讓Source-Drain端變得更小,對縮小尺寸有相當(dāng)大的幫助。
最后,則是為什么會有人說各大廠進(jìn)入10納米制程將面臨相當(dāng)嚴(yán)峻的挑戰(zhàn),主因是1顆原子的大小大約為0.1納米,在10納米的情況下,一條線只有不到100顆原子,在制作上相當(dāng)困難,而且只要有一個原子的缺陷,像是在制作過程中有原子掉出或是有雜質(zhì),就會產(chǎn)生不知名的現(xiàn)象,影響產(chǎn)品的良率。
如果無法想像這個難度,可以做個小實驗。在桌上用100個小珠子排成一個10×10的正方形,并且剪裁一張紙蓋在珠子上,接著用小刷子把旁邊的的珠子刷掉,最后使他形成一個10×5的長方形。這樣就可以知道各大廠所面臨到的困境,以及達(dá)成這個目標(biāo)究竟是多么艱鉅。
隨著技術(shù)的成熟,臺積電與三星正在加快14與16納米FinFET的量產(chǎn)進(jìn)程,兩者勢必會在近期內(nèi)爭奪蘋果iPhone手機(jī)芯片的代工,兩家企業(yè)的良性競爭勢必會為消費(fèi)者們帶來更加省電的同時功能性更佳的產(chǎn)品,希望今后的市場上多一些這樣的良性競爭。
特別推薦
- 音頻放大器的 LLC 設(shè)計注意事項
- 服務(wù)器電源設(shè)計中的五大趨勢
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數(shù)!
- 功率器件熱設(shè)計基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計指南,拿下!
技術(shù)文章更多>>
- 解鎖AI設(shè)計潛能,ASO.ai如何革新模擬IC設(shè)計
- 汽車拋負(fù)載Load Dump
- 50%的年長者可能會聽障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
- 攻略:7種傾斜傳感器的設(shè)計選擇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)